無論您是在寫第一個函式還是重構遺留程式碼庫,這些提示詞都能幫助您撰寫更乾淨的程式碼、更快修復錯誤,並在不淹沒在文件中的情況下學習新語言。已在ChatGPT、Gemini和Claude上測試,讓您知道哪個模型最擅長各種任務的程式設計。
| 您想做的事 | 最適合 |
|---|---|
| 快速理解不熟悉的程式碼 | Claude |
| 透過錯誤分析來除錯程式碼 | ChatGPT |
| 改善程式碼品質和結構 | Claude |
| 逐步解決演算法問題 | Gemini |
| 快速整合第三方API | ChatGPT |
| 快速學習新的程式語言 | Gemini |
提示詞
快速理解不熟悉的程式碼
Explain this code so I can understand and modify it. [Paste the code block] Language: [language if not obvious] My skill level: [beginner / intermediate / advanced] What I need to do with it: [modify, extend, debug, or just understand] Provide: 1. A plain-English summary of what this code does (2-3 sentences) 2. A line-by-line or block-by-block walkthrough with annotations 3. Any design patterns or idioms being used (and why) 4. Potential bugs, edge cases, or gotchas in this code 5. How I would modify it to [describe intended change] 6. Three things I should understand about this code before touching it
最適合: CLAUDE
Claude在各種技能水平上都提供最易懂的程式碼解說。會根據經驗水平調整語言的複雜度,擅長識別程式碼中不明顯的模式和潛在的陷阱。
已測試 Feb 15, 2026
進階技巧
不只放入不懂的函式,也包含周圍的上下文。隔離的程式碼片段會失去意義。也貼上匯入和呼叫程式碼,讓AI理解全貌。
透過錯誤分析來除錯程式碼
Help me find and fix this bug. Code: [Paste the relevant code] Error message: [paste the exact error or describe unexpected behavior] Expected behavior: [what should happen] Actual behavior: [what actually happens] What I've already tried: [any debugging steps taken] Environment: [language version, OS, framework versions] Provide: 1. Root cause analysis: what's actually causing this error 2. The specific fix with corrected code 3. Why this fix works (explain the underlying issue) 4. How to prevent this type of bug in the future 5. Related bugs that often accompany this one (check for those too) 6. A test case to verify the fix and catch regressions
最適合: CHATGPT
ChatGPT最快識別出錯誤,並提供可直接複製貼上的修復。根本原因的解釋清晰,也建議能捕捉其他模型遺漏邊界案例的測試案例。
已測試 Feb 15, 2026
進階技巧
一定要準確地貼上錯誤訊息,包含完整的堆疊追蹤。用自己的話總結錯誤會丟失AI即時識別問題所需的行號和上下文。
改善程式碼品質和結構
Review and refactor this code for better quality. [Paste the code to refactor] Language: [language] Framework: [if applicable] Primary concern: [readability / performance / maintainability / all of the above] Constraints: [backward compatibility, team style guide, performance requirements] What this code does: [brief description] Provide: 1. A code quality assessment: what's good and what needs work 2. The refactored code with improvements applied 3. A change-by-change explanation of every modification and its benefit 4. Performance implications of the refactoring (better, same, or trade-offs) 5. Any patterns or abstractions that would make this code more maintainable 6. A checklist to verify the refactored code behaves identically to the original
最適合: CLAUDE
Claude提供每次變更都有清晰理由的最深思熟慮的重構建議。尊重現有的程式碼模式,誠實地解釋取捨,而不是盲目套用教科書式的重構。
已測試 Feb 15, 2026
進階技巧
告訴AI團隊的程式碼風格和規範。不符合團隊模式的重構程式碼會在PR審查中造成摩擦。沒人接受的優秀重構就是浪費的重構。
逐步解決演算法問題
Help me solve this algorithm problem. Problem: [paste or describe the problem] Language preference: [language you want the solution in] Context: [interview prep / competitive programming / real project / learning] Constraints: [time complexity requirements, space limits, input size] What I've tried: [any approaches you've attempted] Provide: 1. Problem breakdown: identify the type of problem and applicable techniques 2. A brute force solution first (with time/space complexity) 3. An optimized solution with explanation of the optimization strategy 4. Step-by-step dry run with a small example input 5. Edge cases to handle and test against 6. Similar problems to practice to reinforce this pattern
最適合: GEMINI
Gemini提供帶有清晰複雜度分析的最結構化的演算法解說。用範例輸入的乾跑特別仔細,容易在腦中驗證答案。
已測試 Feb 15, 2026
進階技巧
在問AI之前,至少花15分鐘自己嘗試解題。解釋您試過什麼和卡在哪裡。在部分理解上建構比從零產生答案更能讓AI有效教學。
快速整合第三方API
Help me integrate with this API. API: [name of the service/API] What I need to do: [specific operations: fetch data, send data, authenticate, etc.] My stack: [language, framework, existing dependencies] Auth type: [API key / OAuth / JWT / other] API docs: [paste relevant endpoints or link] Error handling needs: [retry logic, rate limiting, fallback behavior] Provide: 1. Complete working code for the integration with all imports 2. Authentication setup with secure credential handling 3. Request/response type definitions or interfaces 4. Error handling for common API failure modes (rate limits, timeouts, 4xx/5xx) 5. A retry strategy with exponential backoff 6. A simple test to verify the integration works before deploying
最適合: CHATGPT
ChatGPT對熱門API及其認證模式有最廣泛的知識。整合程式碼有適當的錯誤處理,品質可直接用於生產環境,也了解能節省除錯時間的平台特定注意事項。
已測試 Feb 15, 2026
進階技巧
在提示詞中貼上實際的API回應格式(即使是範例)。AI看到實際回應格式比只有端點URL能產生更準確的型別定義和解析處理。
快速學習新的程式語言
Help me get productive in a new programming language quickly. New language: [the language you want to learn] Languages I already know: [your current languages] Goal: [build a specific project / switch jobs / expand skills] Learning style: [build projects / read docs / solve problems] Timeline: [how quickly you need to be productive] Specific area: [web, mobile, systems, data, ML, etc.] Create: 1. A concept mapping guide: 'In [known language], you do X. In [new language], you do Y' 2. The 20% of syntax that covers 80% of daily coding 3. A 'first weekend' project that teaches core language features hands-on 4. Common gotchas and mistakes developers from [known language] make 5. The ecosystem guide: package manager, testing framework, linter, formatter 6. Five resources (free) ordered from 'start here' to 'go deeper'
最適合: GEMINI
Gemini在語言之間的概念對應指南最出色,並提供最新的生態系統資訊。對從特定語言遷移的開發者來說,「常見陷阱」部分特別有價值。
已測試 Feb 15, 2026
進階技巧
不只說想學什麼語言,也說現在使用什麼語言。AI會提供符合您已理解模式的範例。從Python學Rust的開發者和從C++學Rust的開發者需要完全不同的解釋。
基於實際測試結果 — 非假設推測。 查看測試方法
Gemini
Best for algorithm problems and learning new languages. Provides structured explanations with thorough complexity analysis. Its ecosystem knowledge is current. Less detailed in complex debugging scenarios.
結果來源: Gemini 2.0 Flash · 已測試 Feb 15, 2026ChatGPT
Best for debugging and API integrations. Generates the most production-ready code with comprehensive error handling. Has the broadest knowledge of libraries and frameworks. Can over-engineer simple solutions.
結果來源: GPT-4o · 已測試 Feb 15, 2026Claude
Best for code explanations and refactoring. Provides the clearest reasoning for every change and respects existing code patterns. Its code reviews catch subtle issues other models miss.
結果來源: Claude 3.5 Sonnet · 已測試 Feb 15, 2026Grok
Strong at debugging and fast practical code solutions with a direct problem-solving style. Excels at concise code reviews and identifying issues quickly, though less thorough on documentation and best practices than GPT-4o.
結果來源: Grok 2 · 已測試 Feb 15, 2026Always verify AI-generated code before deploying. AI models can produce code that looks correct but has subtle bugs, security vulnerabilities, or performance issues. Run the code, write tests, and understand every line before putting it into production.
Context is everything for good code output. Include your language version, framework, existing patterns, and constraints in every prompt. AI that generates React 17 class components when you use React 19 with hooks wastes your time. Be specific.
Use AI to learn, not just to copy-paste. Ask AI to explain WHY the code works, not just to write it. Understanding the reasoning builds your skills. Copying without comprehension creates technical debt you'll pay for later when the code breaks.